

ANALISI DEL RUMORE IN USCITA

ITALIANO

Versione 1.4 - Settembre 2025

 $SCA\ CONTROL$ - $I\ Sistemi\ di\ controllo\ per\ i\ tuoi\ processi$

1 Introduzione

Il rumore in uscita (o rumore di misura) può generare azioni di controllo indesiderate, causando usura degli attuatori e riduzione delle prestazioni. Gli effetti del rumore di misura possono essere mitigati filtrando il segnale di misura. Tuttavia, un filtraggio eccessivo tende a degradare le prestazioni del controllore. Di conseguenza, ridurre la necessità di filtraggio richiede che il controllore sia robusto al rumore di misura. Lo scopo di questo documento è mostrare che i controllori AC offrono una maggiore robustezza al rumore di misura rispetto ai controllori PID.

2 Fondamenti teorici

Supponiamo che il riferimento r(k) sia costante e che l'uscita y(k) abbia raggiunto il valore di regime \bar{y} . Supponiamo inoltre che y(k) sia affetta da rumore bianco n(k) con varianza σ_y^2 . Pertanto, y(k) può essere modellata come un processo gaussiano WSS (wide-sense stationary) caratterizzato dai seguenti parametri:

- media $\mathbb{E}[y(k)] = \bar{y}$
- varianza $\operatorname{Var}[y(k)] = \sigma_y^2$
- potenza statistica $M_x = \bar{y}^2 + \sigma_y^2$
- potenza del segnale $P = \frac{1}{N} \sum_{k=1}^{N} y(k)^2$. È collegata alla potenza elettrica, la relazione esatta dipende dalla natura dell'attuazione. Utilizzando la Legge dei Grandi Numeri, si ottiene che P converge a M_x all'aumentare di N.

Per compensare il rumore di misura, il controllore genera un'azione di controllo che a sua volta è affetta da rumore con varianza σ_u^2 . Per analizzare la robustezza al rumore di misura, viene spesso definito il *Noise Gain*:

$$k_n = \frac{\sigma_u}{\sigma_y} \tag{1}$$

dove σ_y e σ_u sono rispettivamente le deviazioni standard dell'uscita e dell'azione di controllo. Un valore minore di k_n indica una maggiore robustezza al rumore di misura.

3 Setup sperimentale

Definito il noise gain come misura di robustezza, descriviamo ora il setup sperimentale utilizzato per confrontare i controllori AC e PID con specifiche variabili. Per una data struttura di processo, entrambi i controllori vengono progettati in base a specifiche (α , β ...). Per i dettagli di tali parametri si veda il documento "preliminari". Successivamente, si applica all'uscita un rumore bianco con varianza σ_y^2 e, per entrambi i controllori, il noise gain (indicato come $k_{n,AC}$ e $k_{n,PID}$ rispettivamente) viene calcolato su un ampio numero di campioni (10.000). Infine, si calcola il rapporto tra i due parametri:

$$k_{n,ratio} = \frac{k_{n,PID}}{k_{n,AC}} \tag{2}$$

Se $k_{n,ratio} > 1$, significa che il controllore AC è più robusto al rumore di misura rispetto al PID per quella combinazione di specifiche.

Il test viene poi ripetuto per altri valori di specifiche e tutti i risultati sono rappresentati in un grafico.

Nota: si può dimostrare che $k_{n,ratio}$ non dipende né dalla potenza del rumore né dal guadagno statico del processo.

3.1 Processi 1p

In Fig. 1, sono riportati i valori di $k_{n,ratio}$ per il caso 1p. Come si osserva, $k_{n,ratio}$ aumenta al diminuire di α e all'aumentare di β . Rimane quasi costante al variare di γ . Inoltre, $k_{n,ratio}$ cresce leggermente al ridursi della specifica di overshoot. Infine, essendo sempre maggiore di 1, il controllore AC risulta sempre più robusto in questo caso.

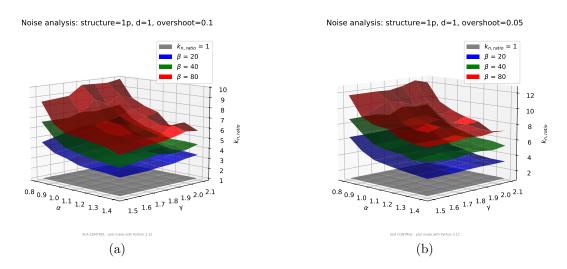


Figure 1: Test per processo 1p con a) overshoot 10%, b) overshoot 5%.

3.2 Processi 1p1z

In Fig. 2, sono riportati i valori di $k_{n,ratio}$ per il caso 1p1z. I risultati sono simili al caso 1p. Pertanto, $k_{n,ratio}$ aumenta al diminuire di α e all'aumentare di β . Rimane quasi costante al variare di γ . Inoltre, $k_{n,ratio}$ cresce leggermente al ridursi della specifica di overshoot. Infine, essendo sempre maggiore di 1, il controllore AC risulta sempre più robusto in questo caso.

3.3 Processi 2p

In Fig. 3, sono riportati i valori di $k_{n,ratio}$ per il caso $2p^1$. Per quanto riguarda il caso di poli reali coincidenti (Fig. 3.a e Fig. 3.b), $k_{n,ratio}$ aumenta all'aumentare di γ . Rimane quasi costante al variare di β . Inoltre, $k_{n,ratio}$ cresce leggermente al ridursi della specifica di overshoot. Infine, $k_{n,ratio}$ è sempre molto maggiore di 1, quindi il controllore AC è

 $^{^1}$ Per i processi 2p e 2p1z non è stato possibile progettare il controllore PID come funzione di α , quindi la dipendenza da α non è considerata.

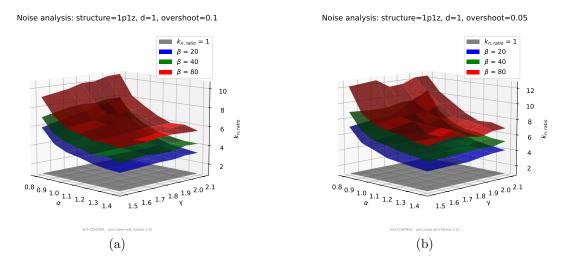


Figure 2: Test per processo 1p1z con a) overshoot 10%, b) overshoot 5%.

sempre molto più robusto in questo caso. Per quanto riguarda il caso di poli complessi coniugati (Fig. 3.c), le considerazioni sono le stesse, con valori di $k_{n,ratio}$ ancora maggiori, e quindi con una robustezza del controllore AC ancora più evidente.

3.4 Processi 2p1z

In Fig. 4, sono riportati i valori di $k_{n,ratio}$ per il caso 2p1z. I risultati sono simili al caso 2p. Pertanto, $k_{n,ratio}$ aumenta all'aumentare di γ . Rimane quasi costante al variare di β . Inoltre, $k_{n,ratio}$ cresce leggermente al ridursi della specifica di overshoot. Infine, $k_{n,ratio}$ è sempre molto maggiore di 1, quindi il controllore AC è sempre molto più robusto in questo caso.

4 Conclusioni

Gli esperimenti suggeriscono che, in generale, il controllore AC è più robusto al rumore di uscita. Ciò è particolarmente evidente nei casi di processi 2p e 2p1z. La ragione risiede nella forma impulsiva della risposta al gradino dell'azione di controllo. Infatti, per i processi 2p e 2p1z, la progettazione del PID è stata possibile solo con valori ridotti di α , che implicano un contributo derivativo più marcato (si veda il documento "preliminari"). Al contrario, la risposta al gradino molto più smorzata del controllore AC porta a una maggiore robustezza al rumore di uscita. In conclusione, l'uso del controllore AC può garantire una minore usura degli attuatori senza degradare le prestazioni del controllore.

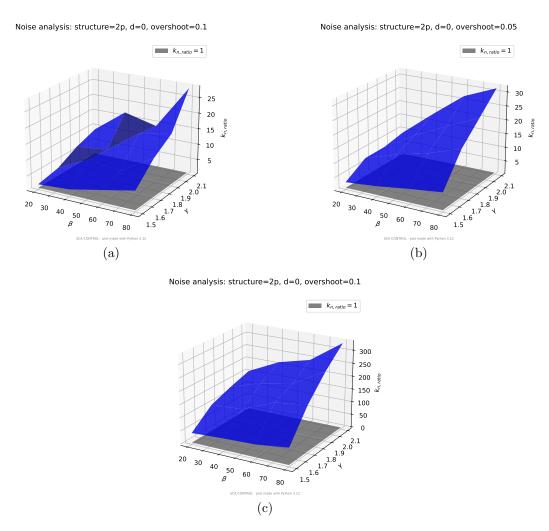


Figure 3: Test per processo 2p con a) overshoot 10% e poli reali coincidenti, b) overshoot 5% e poli reali coincidenti, c) overshoot 10% e poli complessi coniugati.

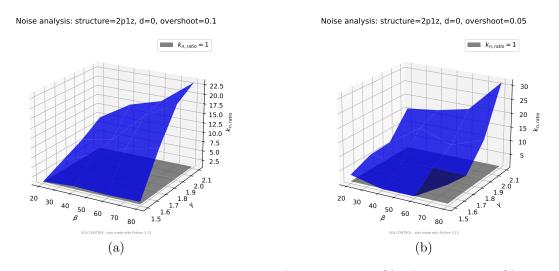


Figure 4: Test per processo 2p1z con a) overshoot 10%, b) overshoot 5%.

References

- [1] P. Cuff, ELE 301: Signals and Systems, Princeton University, 2011-12.
- [2] V. R. Segovia, T. Hagglund, K. J. Astrom, Measurement noise filtering for PID controllers, Department of Automatic Control, Lund University, 2014.
- [3] V. R. Segovia, T. Hagglund, K. J. Astrom, *Design of Measurement Noise Filters for PID Control*, Department of Automatic Control, Lund University, 2014.

Contatti

Per maggiori informazioni non esitare a contattare SCA CONTROL tramite:

 $\bullet \;$ E-mail: support@scacontrol.com

• Telefono: +39 3429411838

• Sito web: www.scacontrol.com

Nota: SCA CONTROL si riserva il diritto di apportare modifiche tecniche o aggiornare i contenuti di questo documento senza preavviso. Tutti i diritti su questo documento, inclusi contenuti e illustrazioni, sono riservati. È vietata la riproduzione, la distribuzione a terzi o l'utilizzo, parziale o totale, dei contenuti senza autorizzazione scritta di SCA CONTROL.