

CONSUMPTION ANALYSIS

ENGLISH

Version 1.5 - September 2025

SCA CONTROL - Control systems for your processes

1 Introduction

In this report, we make a comparison between the AC and the PID controller in terms of consumption. By consumption, we refer to the energy of the control action signal, namely the signal energy E of the control action u(t) over the period from t_1 to t_2 is:

$$E = \int_{t_1}^{t_2} u(t)^2 dt \tag{1}$$

Clearly, in practice, what we need is the electric energy consumption, but it depends on the specific process to control. However, it is strictly related to the control action energy, often with a proportional relationship¹. Therefore, the study of the control action energy provides meaningful indications regarding the actual energy consumption.

2 Experimental setup

The experiments are performed in a simulated environment with ideal conditions (no noise, perfectly known parameters, etc.). Given a particular process structure, both AC and PID controllers are designed for a specific combination of specifications (α , β ...). See "preliminaries" document for the explanation of such parameters. To measure the consumption, a step reference is applied and (1) is used on the control action, taking the settling time as the integration interval. For AC and PID controller respectively, we obtain E_{AC} and E_{PID} . Now let us define the ratio between E_{PID} and E_{AC} :

$$E_r := E_{PID}/E_{AC} \tag{2}$$

Therefore $E_r > 1$ means that the AC controller generates a control action with less energy consumption. The test is then repeated for other values of specifications and all the outcomes are plotted in a graph. All this is repeated with different process structures².

2.1 1p-processes

In Fig. 1, we plot the values of E_r for the 1p-process case. As one can observe, E_r slightly increases as α decreases and γ increases. There is not a clear dependence on β and overshoot requirement. Moreover, for every combination of specifications, E_r is greater than one, namely, the AC controller always provides a control action with lower energy consumption.

2.2 1p1z-processes

In Fig. 2, we plot the values of E_r for the 1p1z-process case. The results are similar to the 1p-process case. In particular, E_r slightly increases as α decreases and γ increases. There is not a clear dependence on β and overshoot requirement. Moreover, for every combination of specifications, E_r is greater than one, namely the AC controller always provides a control action with lower energy consumption.

¹To know exactly the consumption of the electrical energy, a process-specific analysis is required, since it also depends on several parameters that are not considered here, such as the working point of the system.

²It can be proved that E_r does not depend on the static gain of the process, so the results will have a general meaning.

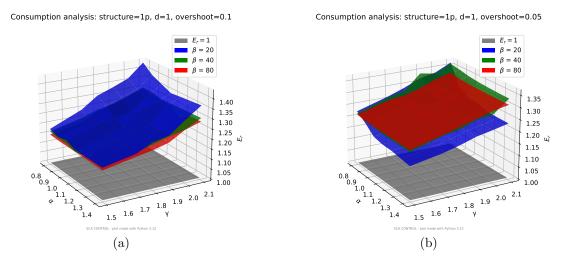


Figure 1: Test for 1p-processes: a) 10% overshoot, b) 5% overshoot.

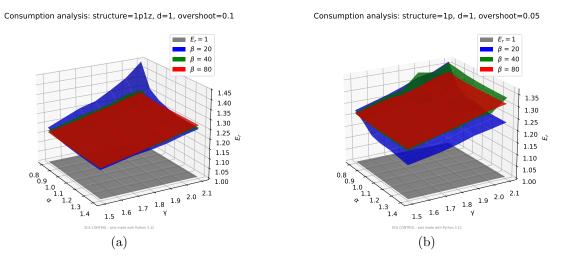


Figure 2: Test for 1p1z-processes: a) 10% overshoot, b) 5% overshoot.

2.3 2p-processes

In Fig. 3, we plot the values of E_r for the 2p-process case³. Regarding the case of real-coincident poles (Fig. 3.a and Fig. 3.b), E_r generally increases as β and γ increase. It remains almost constant varying the overshoot requirement. Finally E_r is always much greater than 1, so the AC controller provides a control action with significantly lower energy consumption. Regarding the case of complex-conjugate poles (Fig. 3.c), the considerations are the same, with greater values of E_r , therefore with an even lower energy consumption of the AC controller as a result.

2.4 2p1z-processes

In Fig. 4, we plot the values of E_r for the 2p1z-process case. The results are similar to the 2p-process case. So, E_r generally increases as β and γ increase. It remains almost

³For 2p-processes and 2p1z-processes it was not possible to design the PID controller as a function of α , so the dependency on α is not considered.

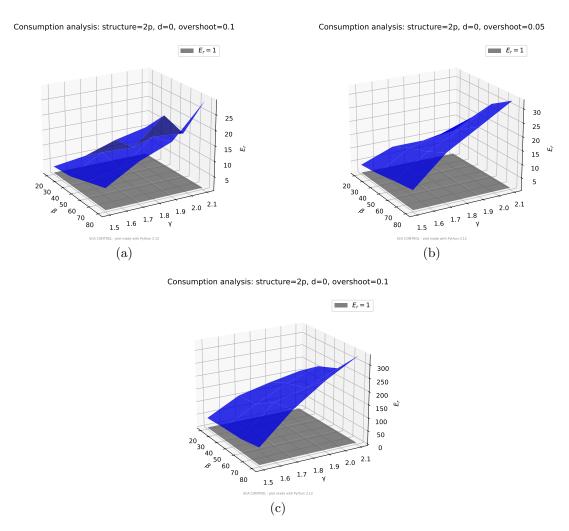


Figure 3: Test for 2p-process with a) 10% overshoot and real and coincident poles, b) 5% overshoot and real-coincident poles, c) 10% overshoot and complex-conjugate poles.

constant varying the overshoot requirement. Finally E_r is always much greater than 1, so the AC controller provides a control action with lower energy consumption.

3 Conclusion

The experiments suggest that in general the AC controller provides a control action with lower energy consumption. This effect is particularly evident for the 2p-process and 2p1z-process cases. The reason is the impulsive shape of the control action step response. Indeed, for the 2p-process and 2p1z-process experiments, the design of the PID controller was possible with small values of α which implies a greater derivative contribution (see 'preliminaries' document). In contrast, the smoother step response of the AC control action leads to lower energy consumption.

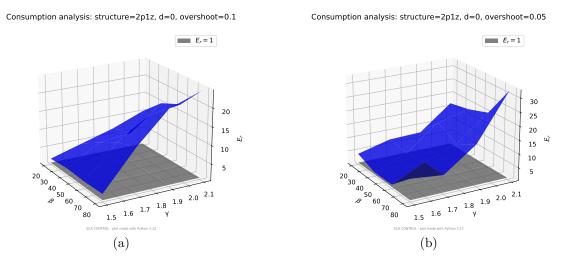


Figure 4: Test for 2p1z-processes: a) 10% overshoot, b) 5% overshoot.

References

- [1] P. Cuff, ELE 301: Signals and Systems, Princeton University, 2011-12.
- [2] J. C. Willems, *Dissipative Dynamical Systems*, *Part I: General Theory*, Massachusetts Institute of Technology, 1972.
- [3] D. J. Hill, P. J. Moylan, *Dissipative Dynamical Systems: Basic Input-Output and State Properties*, University of California, Berkeley, 1980.

Contacts

For more information, do not hesitate to contact SCA CONTROL through:

ullet E-mail: support@scacontrol.com

• Phone: +39 3429411838

• Website: www.scacontrol.com

Note: SCA CONTROL reserves the right to make technical changes or update the contents of this document without notice. All rights to this document, including the contents and illustrations, are reserved. It is forbidden to reproduce, distribute to third parties, or use any of the contents, partially or fully, without written authorization from SCA CONTROL.