

ANALISI DEI CONSUMI

ITALIANO

Versione 1.5 - Settembre 2025

SCA CONTROL - I sistemi di controllo per i tuoi processi

1 Introduzione

In questo report viene proposta una comparazione tra il controllore AC e il controllore PID in termini di consumo. Per consumo intendiamo l'energia del segnale di controllo, ossia l'energia del segnale u(t) calcolata sull'intervallo temporale compreso tra t_1 e t_2 :

$$E = \int_{t_1}^{t_2} u(t)^2 dt \tag{1}$$

In pratica, ciò che interessa è il consumo di energia elettrica, che tuttavia dipende dallo specifico processo da controllare. È comunque strettamente legato all'energia del segnale di controllo, spesso con una relazione proporzionale¹. Lo studio dell'energia del segnale di controllo fornisce quindi indicazioni significative riguardo al consumo energetico effettivo.

2 Setup sperimentale

Gli esperimenti sono stati condotti in un ambiente simulato con condizioni ideali (assenza di rumore, parametri perfettamente noti, ecc.). Dato uno specifico processo, entrambi i controllori (AC e PID) sono stati progettati per una combinazione prefissata di specifiche $(\alpha, \beta...)$. Si veda il documento "preliminari" per la spiegazione di tali parametri.

Per la misura del consumo viene applicato un riferimento a gradino e l'energia è calcolata tramite (1) sul segnale di controllo, assumendo come intervallo di integrazione il tempo di assestamento. Per i controllori AC e PID si ottengono rispettivamente E_{AC} ed E_{PID} . Definiamo quindi il rapporto:

$$E_r := E_{PID}/E_{AC} \tag{2}$$

Dunque, $E_r > 1$ indica che il controllore AC genera un segnale di controllo con minore consumo energetico.

Il test viene ripetuto per altre combinazioni di specifiche e i risultati vengono riportati in forma grafica. L'intera procedura viene ripetuta per differenti strutture di processo².

2.1 Processi 1p

In Fig. 1 sono riportati i valori di E_r per il caso di processo 1p. Si osserva che E_r cresce leggermente al diminuire di α e all'aumentare di γ . Non emerge invece una dipendenza chiara da β e dal requisito di overshoot. Inoltre, per ogni combinazione di specifiche, E_r risulta maggiore di 1: il controllore AC fornisce quindi sempre un segnale di controllo con minore consumo energetico.

2.2 Processi 1p1z

In Fig. 2 sono riportati i valori di E_r per il caso di processo 1p1z. I risultati sono simili al caso 1p: E_r cresce leggermente al diminuire di α e all'aumentare di γ . Non emerge

¹Per conoscere con precisione il consumo di energia elettrica è necessaria un'analisi specifica del processo, poiché esso dipende anche da diversi parametri non considerati in questo studio, come ad esempio il punto di lavoro del sistema.

²Si può dimostrare che E_r non dipende dal guadagno statico del processo, per cui i risultati hanno validità generale.

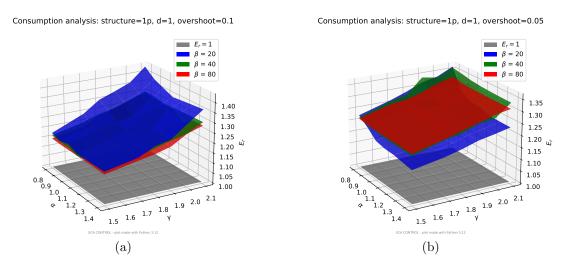


Figura 1: Test per processi 1p: a) 10% di overshoot, b) 5% di overshoot.

una dipendenza chiara da β e dal requisito di overshoot. Inoltre, per tutte le specifiche, E_r è maggiore di 1: il controllore AC fornisce sempre un segnale di controllo con minore consumo energetico.

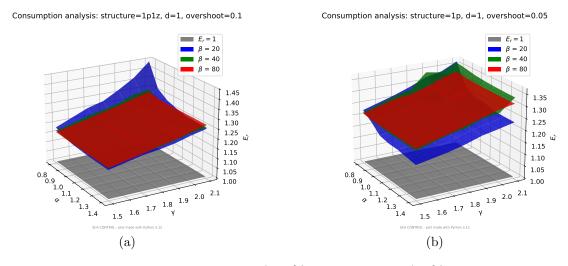


Figura 2: Test per processi 1p1z: a) 10% di overshoot, b) 5% di overshoot.

2.3 Processi 2p

In Fig. 3 sono riportati i valori di E_r per il caso di processo $2p^3$.

Nel caso di poli reali e coincidenti (Fig. 3.a e Fig. 3.b), E_r aumenta in generale con β e γ , mentre rimane pressoché costante al variare dell'overshoot. In ogni caso, E_r è sempre molto maggiore di 1: il controllore AC garantisce quindi un segnale di controllo con consumo energetico significativamente inferiore.

 $^{^3}$ Per i processi 2p e 2p1z non è stato possibile progettare il controllore PID come funzione di $\alpha,$ quindi la dipendenza da α non è considerata.

Per il caso di poli complessi coniugati (Fig. 3.c), le considerazioni sono analoghe, ma con valori di E_r ancora maggiori, quindi con un ulteriore vantaggio in termini di consumo per il controllore AC.

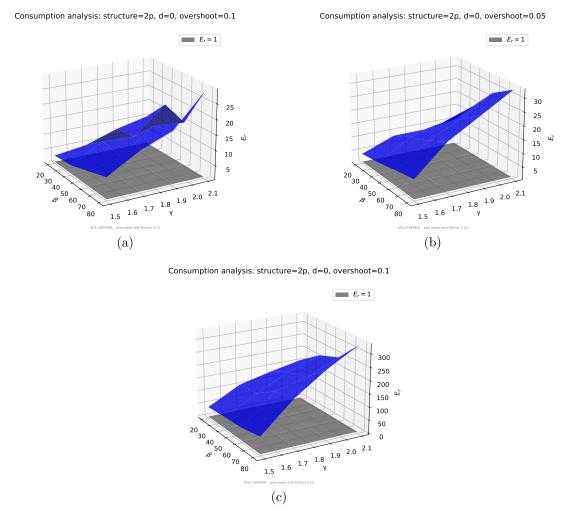


Figura 3: Test per processi 2p: a) 10% di overshoot con poli reali e coincidenti, b) 5% di overshoot con poli reali e coincidenti, c) 10% di overshoot con poli complessi coniugati.

2.4 Processi 2p1z

In Fig. 4 sono riportati i valori di E_r per il caso di processo 2p1z. I risultati sono simili al caso 2p: E_r cresce in generale con β e γ , rimane quasi costante al variare dell'overshoot e risulta sempre molto maggiore di 1. Anche in questo caso, il controllore AC fornisce quindi un segnale di controllo con minore consumo energetico.

3 Conclusioni

Gli esperimenti mostrano che, in generale, il controllore AC garantisce un segnale di controllo con minore consumo energetico. Questo effetto è particolarmente evidente nei casi 2p e 2p1z.

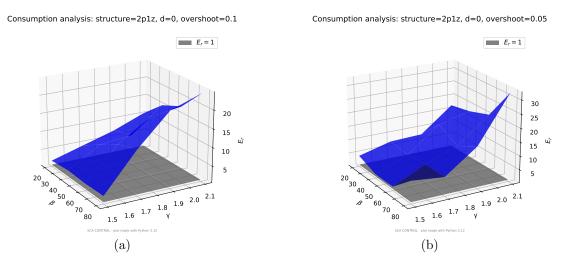


Figura 4: Test per processi 2p1z: a) 10% di overshoot, b) 5% di overshoot.

La ragione risiede nella forma impulsiva della risposta al gradino del segnale di controllo PID. Infatti, negli esperimenti con processi 2p e 2p1z, la progettazione del controllore PID è stata possibile con valori ridotti di α , il che comporta un contributo derivativo più marcato (si veda il documento "preliminari"). Al contrario, la risposta più regolare del segnale di controllo AC conduce a un consumo energetico inferiore.

Riferimenti bibliografici

- [1] P. Cuff, ELE 301: Signals and Systems, Princeton University, 2011-12.
- [2] J. C. Willems, *Dissipative Dynamical Systems*, *Part I: General Theory*, Massachusetts Institute of Technology, 1972.
- [3] D. J. Hill, P. J. Moylan, Dissipative Dynamical Systems: Basic Input-Output and State Properties, University of California, Berkeley, 1980.

Contatti

Per ulteriori informazioni non esitate a contattare SCA CONTROL tramite:

 \bullet E-mail: support@scacontrol.com

• Telefono: +39 3429411838

• Sito web: www.scacontrol.com

Nota: SCA CONTROL si riserva il diritto di apportare modifiche tecniche o aggiornare i contenuti del presente documento senza preavviso. Tutti i diritti relativi al documento, compresi contenuti e illustrazioni, sono riservati. È vietata la riproduzione, la distribuzione a terzi o l'utilizzo, anche parziale, senza autorizzazione scritta di SCA CONTROL.